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Abstract

We present a neural network approach to solve exact and inexact graph isomorphism

problems for weighted graphs. In contrast to other neural heuristics or related methods this

approach is based on a neural refinement procedure to reduce the search space followed by an

energy-minimizing matching process. Experiments on random weighted graphs in the range of

100–5000 vertices and on chemical molecular structures are presented and discussed.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Given two graphs G and H the graph isomorphism problem (GIP) is the problem of
deciding whether G and H are structurally equivalent. The problem is of practical as
well as theoretical importance. Applications include the identification of isomorphic
molecular structures in chemistry [23,34,41], the recognition of protein molecules [1],
the detection of kinematic chains [32], or optimal routing of messages in multistage
interconnecting networks [13], computer vision [5], and the construction and
enumeration of combinatorial configurations [12]. The theoretical interest in the GIP
see front matter r 2004 Elsevier B.V. All rights reserved.
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is based on the persistent difficulty in characterizing its computational complexity.
The GIP is still unsolved in the sense that there is neither an NP-completeness proof,
nor an efficient algorithm with polynomial complexity has yet been found.
Despite the practical and theoretical importance of the GIP no neural network

approach and related heuristics can be used unmodified in a practical setting. Even
the most powerful approaches by Pelillo [28] and Rangarajan et al. [30,31] require a
prohibitive amount of time and are too erroneous on random graphs with only 100
vertices, although the GIP is considered to be trivial for almost all random graphs
[6]. The main reason that neural networks or related methods are not competitive
with efficient graph isomorphism algorithms like Nauty [25] is that they solely rely on
powerful energy minimization procedures and neglect graph-theoretical properties
that are preserved under isomorphism.
For inexact graph isomorphism problems, however, methods from the neural

network community like the Lagrangian Relaxation Network (LRN) [31] and the
Optimizing Network Architecture (ONA) [30] clearly outperform other approaches like
the Eigendecomposition Graph Matching algorithm [39], Polynomial Transform Graph

Matching algorithm [3], or the Linear Programming Graph Matching algorithm [4] on
random weighted graphs as reported in [30]. More recent approaches like the
Principal Component Analysis Graph Matching algorithm [42] and RKHS Inter-

polator-Based Graph Matching algorithm [40] were either tested on small graphs of
order 5–10 or do not present execution times.
In this paper we focus on the inexact graph isomorphism problem comprising its

exact counterpart as a special case. We extend the concept of vertex invariants to
inexact isomorphism problems and devise a two stage neural graph isomorphism
(NGI) algorithm. In a preprocessing step a neural refinement procedure decomposes
the vertex sets of both graphs into subsets of structural similar vertices. In a second
step the information about the decomposition is used to match the graphs with a
special Hopfield network. The effectiveness of the proposed NGI approach is tested
on random graphs with 100–5000 vertices and on chemical molecules.
The rest of this paper is organized as follows: The Section 2 introduces basic

definitions and the statement of the problem. Section 3 defines and discusses vertex e-
invariants in the context of solving exact and inexact graph isomorphism problems.
In Section 4 we propose the NGI algorithm. Section 5 presents the experimental
results and Section 6 concludes this contribution.
2. Preliminaries

This section introduces basic notations and definitions used throughout this paper
and gives a formal specification of the graph isomorphism problem.
Let U ;V be sets. By U%V we denote the set of all 2-element subsets fi; jg of the

disjoint union U _[V with i 2 U and j 2 V . If V ¼ U , we write V ½2� ¼ V%V , that is
V ½2� is the set of all 2-element subsets fi; jg � V .
A family C ¼ fV 1; . . . ;V kg of non-empty subsets V i � V with V ¼

S
iV i is called

a cover of V. The elements of a cover are its clusters. A partition P of a set V is a
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cover of V whose members are pairwise disjoint. The elements of a partition are
usually called its cells. We say a cover C of V is finer than a cover C0 of V, written as
C 
 C0, if every cluster of C is a subset of some cluster of C0. Under these conditions,
C0 is coarser than C.
A weighted graph is a pair G ¼ ðV ;mÞ consisting of a finite set Va; of vertices and

a mapping m : V 2 ! Rþ assigning each pair ði; jÞ 2 V2 a non-negative real valued
weight mði; jÞX0 with mði; jÞ ¼ mðj; iÞ. The weight of a vertex i is given by mði; iÞ. The
elements fi; jg 2 V ½2� with positive weight mði; jÞ40 are the edges of G. The vertex set
of a graph G is referred to as V ðGÞ, its edge set as EðGÞ, and its weight mapping as
mG. By G we denote the set of all weighted graphs. Note that a weighted graph is
undirected, without multiple edges, and without loops.
A binary graph is a weighted graph G ¼ ðV ; mÞ with mðV 2Þ � f0; 1g. A binary graph

assigns the weight 1 for its edges and the weight 0 for non-edges.
The adjacency matrix of a graph G is a matrix AðGÞ ¼ ðgijÞ with entries

gij ¼ mGði; jÞ.
A subset Cm of V ðGÞ consisting of m vertices is called clique of G, if C½2�

m � EðGÞ. A
maximal clique is a clique which is not properly contained in any larger clique. A
maximum clique is a clique with maximum cardinality of vertices. The clique number

oðGÞ of a graph G is the number of vertices of a maximum clique in G.
A matching of a graph G is a subset M � EðGÞ such that no two different edges are

incident with a common vertex. A perfect matching is a matching which covers all
vertices of G.
Let G and H be graphs with adjacency matrices AðGÞ ¼ ðgijÞ and AðHÞ ¼ ðhijÞ,

respectively. An isomorphism from G to H is a bijective mapping

f : V ðGÞ ! V ðHÞ; i 7!if

with gij ¼ hifjf for all i; j 2 V . By IðG;HÞ we denote the set of all isomorphisms
f : V ðGÞ ! V ðHÞ. An automorphism of G is an isomorphism from G to itself. Let
AutG denote the set of all automorphisms of G. Two vertices i, j 2 V are similar, in
symbols i � j, if there exists an automorphism f 2 AutG with if ¼ j. The
automorphism partition PG of G is the partition of V ðGÞ induced by the equivalence
relation �. A cell of PG is called orbit.

2.1. Statement of the problem

Throughout this contribution we assume that G and H are graphs with n vertices
and adjacency matrices AðGÞ ¼ ðgijÞ and AðHÞ ¼ ðhijÞ, respectively. By eX0 we
denote a problem dependent threshold.
Two graphs G and H are e-isomorphic, if there exists a bijection

f : V ðGÞ ! V ðHÞ; i 7!if

with jgij � hifjf jpe for all i; j 2 V ðGÞ. Such a mapping f is called an e-isomorphism

between G and H. The e-graph isomorphism problem (e-GIP) is the problem of
deciding whether two graphs are e-isomorphic. In the following let IeðG;HÞ be the
set of all e-isomorphisms f : V ðGÞ ! V ðHÞ.
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An e-automorphism of G is an e-isomorphism from G to itself. For e40 the set
AuteG is in general not a group. Two vertices i, j 2 V are e-similar, written as i�ej, if
there exists an e-automorphism f with if ¼ j. The e-automorphism cover CG of G is
the cover of V ðGÞ induced by �e.
For e ¼ 0, we obtain the usual definitions of an isomorphism, automorphism, etc.

In the following, we sometimes distinguish between e ¼ 0 and e40 by referring to
exact and inexact concepts, respectively.
Note, that the definition of an e-isomorphism admits to map edges with weights

less than e and non-edges onto each other. Thus as opposed to exact isomorphisms
the inexact counterpart can not only cope with noisy weights but also with missing
edges to a certain degree.
3. Exact and inexact vertex invariants

To solve the exact graph isomorphism problem for G and H, any algorithm has to
search for an isomorphism between G and H among n! possible bijections
f : V ðGÞ ! V ðHÞ. A practical and commonly applied technique to restrict the
search space consisting of n! possible candidates, is the use of vertex invariants [11]. A
vertex invariant is a property of a vertex, which is preserved under isomorphism.
Thus only vertices with the same invariants must be mapped onto each other under
any isomorphism. This section briefly restates the well-known concept of vertex
invariants for conventional isomorphism problems and then extends the basic ideas
of that concept to the inexact counterpart.
3.1. Exact vertex invariants

Let GV ¼ fðG; iÞ : G 2 G; i 2 V ðGÞg. A function f : GV ! Rp is a (p-dimensional)
vertex invariant, if

f ðG; iÞ ¼ f ðH; ifÞ

for all i 2 V ðGÞ and for any isomorphism f 2 IðG;HÞ. We call the vector f ðG; iÞ
invariant of vertex i 2 V ðGÞ.
The best known and most frequently used (exact) vertex invariant is the degree of

a vertex. Further examples assign each vertex the number of vertices reachable along
a path of length k, the number of different cliques of size k, etc. All these invariants
are one-dimensional. An example of a p-dimensional invariant is any combination of
p one-dimensional invariants.
Any isomorphism of G and H must map vertices with the same invariant onto

each other. Thus the objective of using vertex invariants is to decompose the vertex
sets of both graphs such that the pruned search space becomes significantly smaller
than n!.
A vertex invariant f induces a partition Pf ðGÞ ¼ fV 1ðGÞ; . . . ;V rðGÞg of V ðGÞ with

two vertices in the same cell if and only if their invariants are identical. Since f is
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constant on the orbits of AutG, the partition Pf ðGÞ is coarser than or equal to the
automorphism partition PG.
If G and H are isomorphic graphs, then jPf ðGÞj ¼ jPf ðHÞj ¼ r and there exists a

numbering of the cells in Pf ðHÞ such that jVkðGÞj ¼ jV kðHÞj and f ðG; iÞ ¼ f ðH; jÞ
for all i 2 V kðGÞ; j 2 V kðHÞ and for all 1pkpr. Thus, to establish an isomorphism
between G and H we may restrict the search space from n! possible candidates to

cðf ;G;HÞ ¼
Yr

k¼1

ðnk!Þ ð1Þ

candidates, where nk ¼ jVkðGÞj ¼ jV kðHÞj. From Eq. (1) follows that the number of
candidates in the pruned search space becomes smaller the better a partition
approximates the automorphism partition.
3.2. Inexact vertex invariants

Let GV ¼ fðG; iÞ : G 2 G; i 2 V ðGÞg. A function

f : GV ! R; ðG; iÞ7!ðf 1ðG; iÞ; . . . ; f pðG; iÞÞ

is a (p-dimensional) vertex e-invariant, if

f qðG; iÞ � f qðH; ifÞ
�� ��pe

for all 1pqpp, for all i 2 V ðGÞ, and for any e-isomorphism f 2 IeðG;HÞ. We call
the vector f ðG; iÞ e-invariant of i 2 V ðGÞ with respect to f. For e ¼ 0, we obtain the
usual notion of an exact vertex invariant.
According to Proposition 1, examples of one-dimensional vertex e-invariants are

the mean weight, the maximum or the minimum weight of edges incident to a vertex.
A set of p one-dimensional e-invariants can be combined to a p-dimensional
invariant.

Proposition 1. Let G be a graph with adjacency matrix AðGÞ ¼ ðgijÞ. For any eX0 the

following functions are vertex e-invariants:

f 1ðG; iÞ ¼
1

n

X
jai

gij ;

f 2ðG; iÞ ¼ maxfgij : 1pjpng;

f 3ðG; iÞ ¼ minfgij : 1pjpng:

Proof. Let G and H be e-isomorphic graphs with adjacency matrices AðGÞ ¼ ðgijÞ

and AðHÞ ¼ ðhijÞ, respectively. Suppose that f 2 IeðG;HÞ is an e-isomorphism and
i 2 V ðGÞ with j ¼ if 2 V ðHÞ.
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Proof of assertion for f 1: By definition of an e-isomorphism, we have jgik �

hjkf jpe for all kai. This yields

jf 1ðG; iÞ � f 1ðH ; jÞj ¼
1

n

X
kai

gik �
1

n

X
laj

hjl

�����
�����p 1

n

X
kai

jgik � hjkf jpe:

Proof of assertion for f 2: Let g�
i ¼ f 2ðG; iÞ and h�

j ¼ f 2ðH; jÞ. Then there are vertices
k; l 2 V ðGÞ with gik ¼ g�

i and hjlf ¼ h�
j , respectively. By definition of f we have

jg�
i � hjkf jpe and jgil � h�

j jpe. We distinguish three cases:
Case 1: Assume that ðg�

i � h�
j Þðg

�
i � hjkfÞ ¼ 0. Then we have g�

i ¼ h�
j or g�

i ¼ hjkf . If
g�

i ¼ h�
j , then nothing is to show. Suppose that g�

i ¼ hjkf . Then we find that
gilpg�

i ¼ hjkfph�
j . Hence, jg

�
i � h�

j jpjgil � h�
j jpe.

Case 2: Let ðg�
i � h�

j Þðg
�
i � hjkfÞo0. From h�

j Xhjkf follows hjkfog�
i oh�

j . In
addition, we have gilpg�

i oh�
j Hence, jg�

i � h�
j jpjgil � h�

j jpe.
Case 3: Finally, assume that ðg�

i � h�
j Þðg

�
i � hjkfÞ40. We distinguish two further

cases: (a) Either both terms are positive or (2) both terms are negative. If (a) holds,
then g�

i 4h�
j Xhjkf and therefore jg�

i � h�
j jpjg�

i � hjkf jpe. If (b) holds, we have
gilpg�

i ohjkfph�
j . The assertion follows from jg�

i � h�
j jpjgil � h�

j jpe.
Proof of assertion for f 3: Similar to proof of assertion for f 2. &

Similarly, as in the case of exact invariants, an e-isomorphism of G and H maps
vertices of G to vertices of H, if their respective e-invariants do not differ by more
than e. Thus to prune the search space, we decompose the vertex sets of both graphs
into clusters of an e-invariant cover.
A vertex e-invariant f induces a cover Cf ðGÞ ¼ fC1; . . . ;Crg of V ðGÞ, called f-cover,

such that

i; j 2 Ck ) jf qðG; iÞ � f qðG; jÞjpe

for all 1pqpp and all 1pkpr.
Assume that G and H are e-isomorphic. The decompositions of both vertex sets

V ðGÞ and V ðHÞ into f-covers do not as well cooperate as in the case of exact
invariants. The f-covers Cf ðGÞ and Cf ðHÞ may differ in the number of their clusters.
Moreover, it is possible that there is no pair of clusters ðC;C0Þ 2 Cf ðGÞ � Cf ðHÞ such
that jf ðG; iÞ � f ðH; jÞjpe for all ði; jÞ 2 C � C0.
To assess the effects of an e-invariant f on pruning the search space we consider the

bipartite graph Bf ¼ Gf H of G and H induced by f. The graph Bf is a binary graph
with vertex and edge set

V ¼ V ðGÞ _[V ðHÞ;

E ¼ ffi; jg 2 V ðGÞ%V ðHÞ : jf qðG; iÞ � f qðH ; jÞjpe; 1pqppg:

Since G and H are e-isomorphic, there exists at least one perfect matching of Bf . To
find an e-isomorphism of G and H we may restrict the search space from n! possible
candidates to

cðf ;G;HÞ ¼ jMðBf Þj; ð2Þ
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where MðBf Þ is the set of all perfect matchings of Bf . Unfortunately, jMðBf Þj is in
general unknown and time consuming to compute [15]. Under some mild
assumptions the next results show how c can be minimized without knowing its
value.
Let Bf be the bipartite graph of G and H induced by f. By

Nf ðiÞ ¼ fj 2 V ðHÞ : ði; jÞ 2 EðBf Þg

we denote the neighborhood of vertex i 2 V ðGÞ � V ðBf Þ in Bf .

Lemma 1. Let G;H be graphs, let ff 1; . . . ; f pg be a set of one-dimensional vertex e-
invariants, and let Fq ¼ ðf 1; . . . ; f qÞ for all 1pqpp. Then

qor ) cðFq;G;HÞXcðFr;G;HÞ

for all 1pq; rpp.

Proof. Assume that p ¼ 2. To get rid of indices, we set f ¼ f 1 ¼ F1, g ¼ f 2, and
h ¼ F 2 ¼ ðf ; gÞ. Thus the assertion to show is cðf ;G;HÞXcðh;G;HÞ.
Let Bf and Bh be the bipartite graphs of G and H induced by f and h, respectively.

First we show, that NhðiÞ � Nf ðiÞ for all i 2 V ðGÞ. Let j 2 NhðiÞ. Then we have
jf ðG; iÞ � f ðH; jÞjpe and jgðG; iÞ � gðH; jÞjpe. From the former inequality follows
that j 2 Nf ðiÞ. Thus NhðiÞ � Nf ðiÞ.
By definition, NhðiÞ and Nf ðiÞ are complete bipartite subgraphs of Bh and Bf ,

respectively. Deleting a vertex from a neighborhood of i 2 V ðGÞ in a bipartite graph
of G and H induced by some e-invariant does not increase the number of possible
perfect matchings. Hence, cðf ;G;HÞXcðh;G;HÞ.
The proof for p42 follows the same argumentation as for p ¼ 2. &

According to Lemma 1 refining a cover by adding e-invariants does not increase c.
A decrease of c may occur, when additional invariants narrow the neighborhood
Nf ðiÞ in Bf of a vertex i 2 V ðGÞ.
We conclude this section with a result telling us that the e-automorphism cover is

not coarser than a vertex e-invariant cover. Hence, the best reduction of the search
space we can expect is obtained by approximating the e-automorphism cover.

Lemma 2. Let G be a graph, and let f be a vertex e-invariant. Then

CG 
 Cf ðGÞ:

Proof. Let C 2 CG be a cluster of the e-automorphism cover. We show that there is a
cluster C0 2 Cf ðGÞ with C � C0. Let i; j 2 C. Then there is an e-automorphism f with
if ¼ j. This implies jf qðG; iÞ � f qðG; jÞjpe for all q. Since f is an e-invariant, there is a
cluster C0 2 Cf with i; j 2 C0. Hence, we have CG 
 Cf ðGÞ. &
4. A neural e-GIP solver

In practice, most algorithms adopt the same basic approach to the exact graph
isomorphism problem, though the details may vary. To reduce the search space the
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common approach first approximates the automorphism partition of each graph
using a vertex classification procedure which is based on a set of vertex invariants. In
a second step an isomorphism is constructed or non-isomorphism is established by
applying a breadth-first search, depth-first search, or a mixture of both methods. The
NGI algorithm extends this approach for solving exact and inexact graph
isomorphism problems.

Outline of the NGI algorithm: Let G and H be graphs with n vertices.
(1)
 Find covers CðGÞ of V ðGÞ and CðHÞ of V ðHÞ by using a neural refinement
procedure.
(2)
 Use the covers CðGÞ and CðHÞ to construct an e-association graph G�eH of G

and H. The e-association graph is an auxiliary structure to cast the isomorphism
problem to a maximum clique problem.
(3)
 Find a maximum clique Cm in G�eH by using a special Hopfield network.

(4)
 G and H are e-isomorphic if and only if m ¼ n.
Note that the NGI algorithm can be modified in Step 3 by using other clique
algorithms or even a different method to establish (non-) isomorphism.
Before describing Step 1–3 of the NGI algorithm in detail, we precede the

presentation with a general notion to simplify technicalities. All neural networks
involved in the NGI algorithm are associated with a specific graph. Networks for
refining covers are associated with the given graphs to test for e-isomorphism and the
network for solving the maximum clique problem is associated with an association
graph. A neural network NG associated with G consists of n fully connected units.
The dynamics of the network is given by

xiðt þ 1Þ ¼ ð1� dÞxiðtÞ þ
X
jai

wijojðtÞ; ð3Þ

where xiðtÞ denotes the activity of unit i and d is the self-inhibition. The synaptic
weights wij between unit i and unit j are of the form

wij ¼
40 : if fi; jg 2 EðGÞ;

p0 : if fi; jgeEðGÞ:

�

The output function oiðtÞ ¼ oiðxðtÞÞ of unit i is a non-decreasing function applied on
xiðtÞ. The state vector of the network NG at time t is defined by the vector
xðtÞ ¼ ðx1ðtÞ; . . . ;xnðtÞÞ.

4.1. Step 1—Approximating the e-automorphism partition

A state vector xðtÞ of a network NG associated with a graph G can be regarded as a
function

f t : GV ! R; ðG; iÞ7!xiðtÞ

assigning each vertex of a graph the state of its corresponding unit. This formulation
serves to illustrate that a state vector of NG has the same functional form as a vertex
e-invariant. Thus the states xiðtÞ determine a cover such that two units belong to the
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same cluster of that cover, if and only if their initial activations are e-similar. With
evolving time the states and thus the cover changes. In the following we show under
which conditions activations of units are vertex e-invariants of the underlying graph.
Finally, we mention the limitations of this approach.

4.1.1. Exact case

Let NG be a neural network associated with a graph G. Suppose the initial
activation of each unit i of NG is given by hðgiiÞ where h is an arbitrary real valued
function. Then NG together with update rule (3) is a refinement procedure, which
approximates the automorphism partition of G: At each time instance tX0 the state
xðtÞ of NG induces a partition PtðGÞ of the vertex set V ðGÞ. Two vertices i and j are
members of the same cell VkðtÞ 2 PtðGÞ if and only if xiðtÞ ¼ xjðtÞ. The initial state
induces the initial partition P0ðGÞ which is iteratively refined according to dynamical
rule (3). The refinement procedure terminates, when the current partition PtðGÞ is
not finer than Pt�1ðGÞ. Theorem 1 shows that the state xðtÞ of NG is a vertex
invariant and therefore justifies this approach.

Theorem 1. Let G be a graph with adjacency matrix AðGÞ ¼ ðgijÞ and let NG be the

neural network associated with G. Suppose that h is a real-valued function. If wij ¼

hðgijÞ and xið0Þ ¼ hðgiiÞ for all i; j 2 V ðGÞ, then

i � j ) xiðtÞ ¼ xjðtÞ

for all i; j 2 V ðGÞ and all tX0.

Proof. Let i; j 2 V ðGÞ be vertices with i � j and f 2 AutG with j ¼ if. For t ¼ 0 the
assertion follows from xið0Þ ¼ hðgiiÞ ¼ hðgjjÞ ¼ xjð0Þ. Now assume that xiðtÞ ¼ xjðtÞ

holds for some t40. Since xiðtÞ ¼ xjðtÞ, we have oiðtÞ ¼ ojðtÞ. Furthermore, any
automorphism preserves adjacency relations. Hence,

wik ¼ hðgijÞ ¼ hðgjkfÞ ¼ wjkf :

Then by induction we have

xiðt þ 1Þ ¼ ð1� dÞxiðtÞ þ
X
kai

wikokðtÞ ¼ ð1� dÞxjðtÞ þ
X
kfaj

wjkfokfðtÞ

¼ xjðt þ 1Þ: &

Note that, if xið0Þ ¼ 1, d ¼ 1, and

wij ¼
1 : if fi; jg 2 EðGÞ

0 : if fi; jgeEðGÞ

�

for all i; j 2 V ðGÞ, then we obtain Morgan’s procedure [26].
A refinement using xðtÞ as e-invariant may have the undesirable effect of merging

members i 2 C and j 2 C0 of different cells C;C0 2 Pt�1ðGÞ at time step t-1 to a
common cell C00 2 PtðGÞ at time step t. It is a characteristic feature of invariants that
members of different cells are not similar and therefore should remain in different
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cells. One way around this problem is to use the current partition as starting point
for the next partition. In mathematical terms: Since each state xiðtÞ is an one-
dimensional invariant of vertex i for all tX0, the vector f iðtÞ ¼ ðxið0Þ; . . . ;xiðtÞÞ is a
t þ 1-dimensional invariant of i. At each time step t+1, dynamics (3) separately
refines each cell of the current partition Pf ðtÞðGÞ induced by f ðtÞ ¼ ðf 1ðtÞ; . . . ; f nðtÞÞ

such that members from different cells are not joined.
On the other hand, a refinement procedure using f ðtÞ as a set of e-invariant usually

results in a finer partition than the same procedure using xðtÞ, but may require more
computational time to converge to a locally finest partition. Thus, one has to
compromise between computational complexity of partitioning the vertex sets and
establishing (non-) isomorphism. In this sense using invariants is more an art than a
science.
It is left to show that the neural refinement procedure of NG terminates.

Theorem 2. Let NG be a neural network associated with a graph G. Then the partition

refinement procedure (3) using xðtÞ and f ðtÞ as e-invariant terminates within finite time.

Proof. Update rule (3) induces a sequence of partitions ðPtðGÞÞtX0. Since jV ðGÞj is
finite there are only a finite number of possible partitions. Hence, there is a t0X0
such that Pt0þ1ðGÞ is not finer than Pt0 ðGÞ. The convergence proof for ðPf ðtÞðGÞÞtX0

follows a similar argumentation. &

4.1.2. Inexact case

Let G be a graph with adjacency matrix AðGÞ ¼ ðgijÞ. For convenience of
presentation we assume that the weights of G are normalized, that is gij 2 ½0; 1� for all
i; j 2 V ðGÞ. At each time step t, the state vector xðtÞ of the network NG associated
with G induces a cover CtðGÞ of V ðGÞ. Two vertices i; j 2 V ðGÞ are member of the
same cluster V kðtÞ 2 CtðGÞ, if and only if jxiðtÞ � xjðtÞjpe. The initial state xð0Þ
induces an initial cover C0ðGÞ which is then iteratively refined by applying update
rule (3). In the following we show under which conditions the activations of NG are
e-invariants of G.
We assume that the network NG associated with G satisfies the following

conditions:

IE1 The self-inhibition of each unit is d ¼ 1.
IE2 The weights of NG are of the form

wij ¼
gij=3ðn � 1Þ : if fi; jg 2 EðGÞ;

0 : if fi; jgeEðGÞ:

�

IE3 xið0Þ ¼ gii for all i 2 V ðGÞ.
IE4 joiðtÞjp1 for all i 2 V ðGÞ and all tX0.
IE5 joiðtÞ � oiðtÞjpjxiðtÞ � xjðtÞj for all i; j 2 V ðGÞ and all tX0.
The first condition requires that self-weights wii ¼ 1� d are set to zero. The second
condition serves to average out the error jgij � gkl j when mapping all edges incident
to a vertex i to all edges incident to a vertex k. The factor 1

3
scales the average error to

keep jxiðtÞ � xjðtÞj bounded through evolution, if i and j are e-similar. The third
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condition determines the initial state of NG. The fourth condition bounds oi. Finally,
the fifth condition states that the output function satisfies the Lipschitz condition
with Lipschitz constant Kp1. The Lipschitz condition on oi ensures that the
difference of the inputs is not larger than the difference of the outputs. Note, that
conditions IE1, IE3 and IE4 turn the network NG in a special variant of a Hopfield
model.
Theorem 3 states that the activation of units corresponding to e-similar vertices

remain sufficiently close together. Stated in other terms, the activations are an e-
invariant of their corresponding vertices.

Theorem 3. Let G be a graph with adjacency matrix AðGÞ ¼ ðgijÞ. Assume that the

network NG associated with G satisfies the properties IE1–IE5. Then

i�ej ) jxiðtÞ � xjðtÞjpe

for all i; j 2 V ðGÞ and all tX0.

Proof. Let i; j 2 V ðGÞ be two vertices with i�ej and f 2 AutG with if ¼ j. Clearly,
the assertion holds for t ¼ 0, since

jxið0Þ � xjð0Þj ¼ jgii � gjjjpe

by IE3. Now assume that jxiðtÞ � xjðtÞjpe for some tX0. By induction we have

xiðt þ 1Þ � xjðt þ 1Þ
�� �� ¼ X

kai

wikokðtÞ �
X
kfaj

wjkfokf ðtÞ

������
������

¼
1

3ðn � 1Þ

X
kai

gikokðtÞ �
X
kfaj

gjkfokf ðtÞ

������
������

¼
1

3ðn � 1Þ

X
kai

gikokðtÞ �
X
kai

ðgik þ eikÞðokðtÞ þ ekkÞ

�����
�����

with eik ¼ gifkf � gik and ekk ¼ okfðtÞ � okðtÞ. We have jeikj ¼ jgifkf � gikjpe.
Furthermore, from jxiðtÞ � xjðtÞjpe by assumption together with joiðtÞ �

ojðtÞjpjxiðtÞ � xjðtÞj by IE5 directly follows jekkjpe. Hence,

jxiðt þ 1Þ � xjðt þ 1Þj ¼
1

3ðn � 1Þ

X
kai

ekkgik þ
X
kai

eikokðtÞ þ
X
kai

eikekk

�����
�����

p
e

3ðn � 1Þ

X
kai

gik þ
X
kai

jokðtÞj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p2ðn�1Þ

þeðn � 1Þ

0
BBBB@

1
CCCCA
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p
e

3ðn � 1Þ
2ðn � 1Þ þ eðn � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p3ðn�1Þ

0
B@

1
CA

¼ e:

The inequality from the second to the third line uses IE4. This proves the
assertion. &

As opposed to the exact case and despite Lemma 2, simply refining the vertex set
of V ðGÞ by means of xðtÞ has no theoretical justification. Due to the inexactness the
effects of finer covers on pruning the search space are in general not clear. Lemma 1
rectifies the situation, if we consider f ðtÞ ¼ ðxð0Þ; . . . ; xðtÞÞ as t þ 1-dimensional e-
invariant composed of the t þ 1 one-dimensional e-invariants xð0Þ; . . . ;xðtÞ.1

The convergence proof of the inexact refinement procedure using f ðtÞ as e-
invariant is almost identical to the proof of Theorem 2. We include Theorem 4 for
sake of completeness.

Theorem 4. Let NG be a neural network associated with a graph G.

Then the refinement procedure (3) using f ðtÞ as e-invariant terminates within finite

time.
4.1.3. Limitations

For exact graph isomorphism problems, the neural refinement procedure will not
partition the vertex set into proper subsets for regular graphs2, not even in the case
when the automorphism group AutG ¼ fidg is the trivial group.
In the case of inexact graph isomorphism problems, the proposed refinement

procedure fails to partition the vertex set, if the pairwise average weighted degrees3

of all vertices do not differ by more than e=3. Stated in equivalent terms, partitioning
of the vertex set fails, if e is too large.
Moreover, the assumptions IE2 is rather strict. Due to the scaling factor 1=ð3ðn �

1ÞÞ the states of NG converge to zero while the sequence of partitions PtðGÞ induced
by the e-invariant xðtÞ converges to the trivial partition fV ðGÞg after a few iterations.
Since partitioning terminates as soon as the next partition is not finer than the
current one, the proposed inexact refinement procedure may stop after the first or
second iteration with a cover which is much coarser than the e-automorphism cover.
To obtain a finer partition of V ðGÞ we may relax IE2 provided some assumptions
are satisfied. For example, assume that G is a model graph and H is a noisy copy
such that G and H are e-isomorphic. Then there is a graph H 0 isomorphic to H such
that

AðH 0Þ ¼ AðGÞ þ ðeijÞ;
1Note that xðtÞ is n-dimensional as state vector of NG, but one-dimensional as vertex e-invariant of G.
2A graph is regular, if all vertices have the same number of incident edges.
3The weighted degree of a vertex is the sum of the weights of its incident edges.
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where eij denotes the noise of edge fi; jg 2 EðGÞ. Suppose also that the noise eij is a
realization of a random expectational error e with zero mean. Provided that e is
uncorrelated with gij we may relax IE2 to
IE2’
4The

cardina

respect
The weights of NG are of the form

wij ¼
gij=a : if fi; jg 2 EðGÞ;

0 : if fi; jgeEðGÞ;

�

where ap1=ð3ðn � 1ÞÞ is a problem dependent scaling factor.
A suitable choice of a, however, is an open problem.

4.2. Step 2—Construction of an e-association graph

The problem of deciding whether two graphs G and H are e-isomorphic can be
transformed to the problem of finding a maximum clique in an e-association graph
of G and H. This concept apparently has been first suggested by Ambler [5], Barrow
and Burstall [8], and Levi [24]. Since then it has been applied not only to the graph
isomorphism, but also to the more general graph matching problem
[9,21,22,28,29,33,35].
Let f be a p-dimensional vertex e-invariant. The e-association graph G�eH of

graphs G and H is a graph with

V ðG�eHÞ ¼ fði; jÞ 2 V ðGÞ � V ðHÞ : jf qðG; iÞ � f qðH ; jÞjpe; 1pqppg;

EðG�eHÞ ¼ ffði; kÞ; ðj; lÞg 2 V ðG�eHÞ
½2� : jgij � hkl jpe; iaj; kalg:

The following Theorem justifies to cast the e-GIP to the maximum clique problem in an
e-association graph. It states that G and H are e-isomorphic if and only if oðG�eHÞ ¼ n.

Theorem 5. Let G�eH be the e-association graph of graphs G and H with n vertices.

Then there exists a bijection

w : IeðG;HÞ ! CðG�eHÞ

from the set IeðG;HÞ of all e-isomorphism from G to H and the set of all maximum

cliques CðG�eHÞ.

Proof. Define wðfÞ ¼ Cf ¼ fði; ifÞ : i 2 GðV Þg for all f 2 IeðG;HÞ. Then Cf is a
clique with n vertices by construction of G�eH. But then Cf is a maximum clique by
definition of G�eH. In addition, w is well-defined. The mapping w is bijective by
construction of wðfÞ and G�eH. &

It is noteworthy to mention, that in its original formulation, the maximum
(maximal) cliques of an association graph are in one-to-one correspondence with the
maximum (maximal) isomorphisms4 between induced subgraphs of both graphs of
term maximum clique (subgraph, etc.) refers to the largest clique (subgraph, etc.) with respect to

lity while the term maximal clique (subgraph, etc.) refers to the largest clique (subgraph, etc.) with

to the subset relation ‘�’.
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consideration [7]. To simplify the problem of finding a maximum clique in an
association graph G�eH, using e-invariants aims at reducing the size of G�eH such
that several undesirable maximal cliques disappear while all maximum cliques are
maintained at the same time.

4.3. Step 3—Solving the maximum clique problem using Hopfield networks

In the previous step, we casted the problem of deciding whether G and H are e-
isomorphic to the problem of finding a maximum clique Cn in G�eH with
n ¼ jGj ¼ jHj. Finding a maximum clique of a given graph is a well-known NP-
complete combinatorial optimization problem [16]. Following the seminal paper of
Hopfield and Tank [18], the general approach to solve combinatorial optimization
problems maps the objective function of the optimization problem onto an energy
function of a neural network. The constraints of the problem are included in the
energy function as penalty terms, such that the global minima of the energy function
correspond to the solutions of the combinatorial optimization problem.
Let G be a binary (undirected) graph with adjacency matrix AðGÞ ¼ gij. To solve

the maximum clique problem of G using a Hopfield clique network (HCN) HG we
associate the network with the graph G (see page 9).For sake of readability we restate
the architecture and dynamical rule of HG.
The HCN HG consists of n fully interconnected units. The synaptic weights wij

between distinct units i and j are given by

wij ¼
wEX0 : iffi; jg 2 EðGÞ ðexcitationÞ;

�wIo0 : iffi; jgeEðGÞ ðinhibitionÞ:

�

Note that wij ¼ wji, since G is an undirected graph by assumption. The dynamical
rule of HG is of the form

xiðt þ 1Þ ¼ xiðtÞ þ
X
jai

wijojðtÞ; ð4Þ

where xiðtÞ denotes the activation of unit i at time step t. The output function oiðtÞ of
unit i is a piecewise linear limiter function of the form

oiðtÞ ¼

1 : xiðtÞXtt;

0 : xiðtÞp0;

xiðtÞ=tt : otherwise;

8><
>: ð5Þ

where tt is a time dependent control parameter called pseudo-temperature. The
output function oiðtÞ has a lower and an upper saturation point at 0 and 1,
respectively. Starting with a sufficient large initial value t0 the pseudo-temperature is
decreased according to an annealing-schedule to a final value tf .
The energy function of the network to be minimized is then of the form

EðtÞ ¼ �
1

2

X
i

X
jai

wijoiðtÞojðtÞ: ð6Þ
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Provided an appropriate parameter setting is given, Theorem 6 states that dynamical
rule (3) performs a gradient descent with respect to the energy function E where the
global (local) minima of E are in an one-to-one correspondence to the maximum
(maximal) cliques of G. Before stating Theorem 6, we introduce two technical terms
to simplify its formulation. Let degEðiÞ be the number of excitatory connections
incident to unit i. We call

degE ¼ maxfdegEðiÞ j 1pipng

the excitatory degree of HG and

degI ¼ maxfn � degEðiÞ � 1 j 1pipng

the inhibitory degree of HG. Since any vertex can have at most n � 1 adjacent
neighbors, the excitatory degree degE is less than n and therefore degIX0. Now we
are able to formulate Theorem 6.

Theorem 6. Let G be a binary graph of order jGj ¼ n and HG be a HCN associated with

G. Assume that ttX1 for all tX0. If

wEp
2

n þ degI ðdegE � 1Þ
; ð7Þ

wIXdegEwE ð8Þ

then
(1)
 Eðt þ 1ÞpEðtÞ for all tX0.

(2)
 There is a bijection between the global (local) minima of E and the maximum

(maximal) cliques of G.
Proof. [20]. &

From the first statement together with the fact that E is bounded follows that HG

converges. Since the local minima of EðtÞ correspond to maximal cliques, we cannot
guarantee that the network HG converges to an optimal solution corresponding to a
maximum clique. In addition the network can converge to unstable points u 2 Rn of
EðtÞ. Due to their instability, imposing random noise onto HG may shift the output
vector oðtÞ away from u. An example of an unstable point is the trivial solution
0 2 Rn.
The upper bound of wE ensures that HG performs a gradient descent with respect

to E. The lower bound of wI guarantees that HG converges to a feasible solution
provided that saddle points are avoided by imposing random noise onto the
network.
Given a parameter setting satisfying the bounds of Theorem 6 the HCN operates as

follows: An initial activation is imposed on the network. Finding a maximum clique
then proceeds in accordance with dynamical rule (3) until the system converges to a
stable state. During evolution of the network any unit is excited by all active units
with which it can form a clique and inhibits all other units. After convergence the
stable state corresponds to a maximal weighted clique C of G. The units
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corresponding to the vertices of C can be identified by their respective non-negative
activation.
5. Experimental results

We tested the NGI algorithm on random binary, chemical molecules, and random
weighted graphs. For approximately solving the maximum clique problem in Step 3
of NGI we used the HCN algorithm presented in Section 4.3 and compared it with
other clique algorithms of the neural network community: Steepest Descent (SD) [19],
r-Annealing (RHO) [19], Mean-Field Annealing (MFA) [19], and the Exponential
Replicator Equations (ERE) [28]. SD and RHO are fast algorithms which work on a
discrete search space. MFA is the slowest but apparently the most accurate of all 5
clique algorithms. The replicator dynamics is derived from evolutionary game theory
[17] and is despite its simplicity a powerful method to approximately solve the
maximum clique problem. It uses the Motzkin–Strauss formulation of the maximum
clique problem [27] and its spurious-free extensions [10]. The algorithms were
implemented in Java using JDK 1.2. All experiments were conducted on a multi-
server Sparc SUNW Ultra-4.

5.1. Random binary graphs

For each isomorphism test we considered pairs of graphs ðG;HÞ where G is a
randomly generated graph with n vertices and edge probability p and H is a
randomly permuted version of G. The chosen parameters were n ¼ 100, 500, 1000,
2500, 5000 and p ¼ 0:01, 0:05, 0:1, 0:3, 0:5. We generated 100 examples for each pair
ðn; pÞ giving a total of 2500 isomorphism tests. Note, that the GIP of graphs with
p40:5 is equivalent to the GIP of the complementary graphs.
The chosen invariant was the vertex invariant xðtÞ as proposed in Theorem 1. For

sparse graphs we additionally employed the number ni of connected components Pi

consisting of i vertices for i 2 f1; 2; 3g as additional graph invariant. The components
Pi are uniquely determined and form paths of length i � 1. Since isomorphic graphs
have the same number of components, it is sufficient to compare the numbers ni for
each i 2 f1; 2; 3g. If the graphs of consideration pass that test the components Pi can
be discarded and isomorphism testing continues on the reduced graphs consisting of
the remaining components.
We used random graphs for the purpose of comparing the proposed NGI

algorithm with the best methods applied to the GIP within the neural network
community. In particular, we compared our results with the Lagrangian Relaxation

Network (LRN) [31], the optimizing Network Architecture (ONA) [30], and the
Exponential Replicator Dynamics (REP) [28]. Note that REP uses the same dynamics
as ERE but is applied on a different association graph using the degree of a vertex as
invariant. Due to their high computational effort LRN, ONA, and REP were tested on
100-vertex random graphs only. Other neural networks approaches as [2,36] have
been empirically proven to be not competitive with LRN, ONA, and REP. In addition we
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compared NGI with two well-known non-neural methods, Ullman’s algorithm [38],
and Nauty [25]. Ullman’s algorithm and Nauty are both exact algorithms which
guarantee to return a correct solution. Ullman’s algorithm is still one of the most
commonly used algorithms for graph and subgraph isomorphism problems. Nauty is
considered to be the fastest graph isomorphism algorithm today available. Results
on the performance of Ullman’s algorithm and Nauty on random graphs are taken
from [14]. Both algorithms are implemented in C/C++.
Table 1 summarizes the results. The results of ERE and HCN are roughly equivalent.

Both algorithms terminated with correct results on all trials. The errors of MFA,
shown in Table 1 as bracketed numbers, are all caused by exceeding the given time-
limit of 10; 000 iterations. The erroneous results of SD and RHO indicate that solving
the maximum clique problem in Step 3 of NGI is not a trivial task.
As expected, NGI using any of the five clique algorithms SD, RHO, MFA, ERE, and

HCN outperformed LRN, ONA, and REP with respect to both accuracy and speed.
Accuracy of NGI using SD and RHO is roughly equivalent to LRN and superior than
ONA, and REP. Accuracy of LRN, ONA, REP degraded for sparse graphs of order 100.
The LRN algorithm terminated with a correct solution for all test runs except for 5%
failures at p ¼ 0:01. ONA and REP performed poorly on 100-vertex random graphs
with po0:05. As an example for p ¼ 0:01 the percentage of correct solutions is about
0:11 for REP and 0:0 for ONA. But even if we are willing to live with a small degree of
uncertainty, LRN, ONA, and REP are prohibitively slow. The average times to match
two 100-vertex random graphs were about 600–1800 s for LRN on a SGI
workstation, about 80 s for ONA on the same SGI workstation, and about 3–2000 s
for REP on a SPARC-20 workstation. In contrast, the average time required by NGI
using HCN is about 0:002–0:006 s for 100-vertex graphs and 4–6 s for 5000-vertex
graphs. The results indicate, that structural preprocessing might be of much more
impact on combinatorial optimization problems than solely using sophisticated and
powerful energy minimization methods. On the other hand, using invariants is
involved with loss of generality. As opposed to LRN and ONA, the NGI algorithm as
well as REP are not applicable for more general graph matching problems unless they
abandon from invariants.
Ullman’s algorithm and Nauty clearly outperformed LRN, ONA, and ERE.

According to the results reported in [14] the average computational time of
Ullman’s algorithm and Nauty for sparse 100-vertex random graphs with
edge probability p 2 ½0:01; 0:1� were about 10�2 and 10�3 s on an Intel Celeron
500MHz PC. Thus Ullman’s algorithm and Nauty do not only guarantee to return a
correct solution, but also are about 105–106 times faster on sparse random graphs
than LRN, ONA, and ERE. These results confirm that previous neural network
solutions applied to the graph isomorphism problem are not competitive with other
approaches.

NGI using HCN outperformed Ullman’s algorithm on random graphs. Taking into
account the different programming languages and machines, the execution times of
NGI and Ullman’s algorithm are approximately of the same order for 100-vertex
graphs. But NGI is about 100 times faster than Ullman’s algorithm for 500-vertex
random graphs. According to [14] Ullman’s algorithm was not able to find an
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Table 1

Results of isomorphism tests on random binary graphs

n p Time (s)

SD RHO MFA ERE HCN

0.01 0.012 0.016 0.160 0.023 0.006

0.05 ð6Þ0.004 ð8Þ 0.009 0.091 0.011 0.003

100 0.1 ð6Þ0.006 ð9Þ 0.009 0.039 0.006 0.002

0.3 ð1Þ0.006 ð9Þ0.014 0.400 0.003 0.003

0.5 ð2Þ0.003 ð3Þ0.007 0.099 0.008 0.003

0.01 0.073 0.129 0.400 0.101 0.070

0.05 ð25Þ0.052 ð22Þ0.087 0.407 0.090 0.046

500 0.1 ð12Þ0.368 ð3Þ0.649 0.058 0.074 0.056

0.3 0.082 0.178 ½8�0.398 0.070 0.050

0.5 0.064 0.115 1.188 0.065 0.056

0.01 ð8Þ0.237 ð7Þ0.383 ½4�1.408 0.274 0.222

0.05 ð26Þ0.188 ð28Þ0.303 0.518 0.379 0.175

1000 0.1 ð5Þ2.595 ð3Þ3.616 ½28�79.517 0.274 0.201

0.3 0.278 0.672 ½60�14.272 0.274 0.191

0.5 0.240 0.458 3.523 0.370 0.222

0.01 ð24Þ1.314 ð8Þ1.310 — 1.344 1.247

0.05 ð24Þ25.091 ð20Þ25.610 — 2.640 1.073

2500 0.1 ð4Þ13.972 13.846 — 1.288 1.138

0.3 1.710 1.561 — 1.288 1.169

0.5 1.490 1.492 — 1.517 1.372

0.01 ð8Þ5.072 ð8Þ6.547 — 5.677 4.999

0.05 ð36Þ4.522 4.701 — 5.953 4.684

5000 0.1 54.792 80.722 — 5.165 4.514

0.3 6.172 7.498 — 5.576 4.782

0.5 6.051 8.909 — 6.516 5.802

Shown are the average computational times in seconds for varying size n and density p. The numbers in

parenthesis indicate the percentage error, if at least on isomorphism test failed. Bracketed numbers show

the percentage of time-out errors. Best execution times are highlighted.
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isomorphism for graphs with more than 700 vertices. This shows that NGI is
competitive with standard algorithms for the isomorphism problem.
On the other hand Nauty is superior than NGI for large graphs. For sparse

random graphs with 1000 vertices the average time required by Nauty is about 0:05 s
while NGI using HCN required about 0:2 s. Even if we take into account that an
algorithm implemented in Java is slower than the same algorithm implemented in C/
C++, the results in [14] clearly indicate that Nauty outperformed NGI for large
random graphs. The main reason for the better performance of Nauty is its more
extensive and sophisticated use of vertex and edge invariants together with some
efficient pruning techniques.
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5.2. Chemical molecules

In this experiment, we applied the NGI algorithm on 230 chemical compounds of
the mutagenicity dataset described in [37]. The number of atoms are in the range of
13–40. The average size of the data set is 25:6 and its deviation 6:7. Each molecule
was transformed to an attributed graph where vertices represent atoms and edges
represent bonds between the corresponding atoms. To each vertex and edge we
assigned the name of the atom and the type of the bond as their attribute. For each
graph representing a molecule we generated 25 randomly permuted versions of that
graph giving a total of 5750 test instances.
Two experiments were conducted. In the first experiment we used the vertex

invariant f ðtÞ ¼ ðxð0Þ; . . . ; xðtÞÞ given in Section 4.1.1. In the second experiment we
additionally used the distance ðdijÞ between two vertices as edge invariant. Note, that
the distance invariant can also be obtained by evolving a neural network.
Table 2 summarizes the results. As opposed to random graphs the structure of

chemical compounds is more regular and symmetric. As expected the performance of
NGI using f ðtÞ as vertex invariant is significantly worse with respect to both, accuracy
and speed. Adding the edge invariant ðdijÞ removes edges in the association graph
and improves the percentage of correct results. The high accuracy of MFA is at the
expense of speed. In particular, when using f ðtÞ+ðdijÞ as invariant, MFA is about 100
times slower than HCN to improve the accuracy about 0:3%. An interesting
observation is that the simplest of all five algorithms, SD and RHO, performed better
than HCN and ERE when using the weaker invariant f ðtÞ. Finally, it is noteworthy to
mention, that the NGI algorithm using HCN is about 50 times faster than the algorithm
proposed by [1] applied on synthetical protein molecules of about the same size.

5.3. Random weighted graphs

For each e-isomorphism test we generate pairs of graphs ðG;HÞ as follows: G is a
randomly generated graph with n vertices and edge probability p. To each edge fi; jg
of G we assigned a randomly chosen weight wij 2 ½0; 1�. To construct H we randomly
permuted G and added uniform noise from the interval ½�e;þe� to all edges of H.
Table 2

Results of isomorphism tests on chemical molecules

f ðtÞ f ðtÞ þ ðdijÞ

err acc msec err acc msec

SD 649 88.7 0.008 24 99.6 0.008

RHO 650 88.7 0.009 18 99.7 0.009

MFA 25 99.6 0.555 0 100.0 0.573

ERE 934 83.7 0.018 104 98.1 0.016

HCN 825 83.9 0.005 7 99.9 0.004

Shown are the total number of errors (err), the percentage accuracy (acc), and the average computational

time (msec).
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The chosen parameters were n ¼ 100; 250; 500; 750; 1000, p ¼ 0:25; 0:5; 0:75; 1:0, and
e ¼ a=n with a ¼ 1:0, 0:5, 0:25, 0:1. We generated 100 examples for each pair ðn; aÞ
giving a total of 8000 isomorphism tests.
We have chosen random weighted graphs to compare the proposed NGI algorithm

with LRN and ONA, apparently the most powerful methods applied on inexact graph
isomorphism problems reported in the neural network literature.
In this experiment we only have applied ERE and HCN for solving the maximum

clique problem in Step 3 of the NGI algorithm. As invariant we used f ðtÞ as defined in
Section 4.1.2.
The NGI algorithm using ERE and HCN returned a correct solution on all 8000

trials. Table 3 shows the average computational times in ms required by both
methods for testing on e-isomorphism. In average the HCN implementation is about
1:5 times faster than the ERE implementation. Since this is not a striking
improvement we regard the results of both methods as to be roughly equivalent.
Table 3

Results of e-isomorphism tests on random weighted graphs

n p ERE HCN

Noise factor a Noise factor a

1.0 0.75 0.5 0.25 0.1 1.0 0.75 0.5 0.25 0.1

100 11 9 8 6 4 6 5 4 4 3

250 51 50 47 42 30 30 28 27 25 21

500 0.25 204 199 186 179 133 119 115 112 108 92

750 484 470 468 458 372 281 273 268 259 225

1000 997 962 958 1006 799 549 537 531 519 448

100 9 8 7 6 5 6 5 5 4 4

250 47 44 43 42 35 34 31 30 28 24

500 0.50 190 184 181 179 157 135 129 126 121 107

750 529 520 490 459 422 325 314 303 301 265

1000 1125 1035 992 967 900 663 642 629 620 562

100 9 8 7 6 5 8 6 5 5 4

250 56 47 43 41 35 39 35 32 30 26

500 0.75 197 187 181 179 159 151 142 134 131 119

750 570 531 537 530 482 371 352 336 329 310

1000 1127 1110 1080 1078 1017 675 716 721 716 675

100 10 9 8 6 5 10 7 6 5 4

250 58 47 47 43 38 48 38 34 33 29

500 1.00 213 200 192 190 175 173 156 146 140 129

750 618 586 585 549 523 416 383 367 355 342

1000 1263 1240 1216 1217 1192 879 841 818 800 774

Shown are the average computational times in ms required by the NGI algorithm using ERE and HCN

applied on the e-isomorphism test on random weighted graphs.
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From the results we see that the NGI algorithm performs best on sparse graphs with
small noise level and worse for dense graphs with high noise level.
If the noise is sufficiently small such that it does not disrupt the structure of a

graph, NGI is clearly superior than LRN and ONA. The faster of both other
approaches (ONA) takes about 80 seconds to match two fully connected 100-vertex
graphs, while NGI using HCN requires about 0:004–0:01 s for matching two fully
connected 100-vertex graphs and about 0:4–0:9 s to match two arbitrary 1000-vertex
graphs. If the noise level becomes too large (e41=n for uniformly distributed
weights) and disrupts the structure of the graph, then the e-GIP turns into a general
graph matching problem. In this case LRN and ONA outperform NGI with respect to
both accuracy and speed. An interesting observation is that the execution times of
NGI approximately increase quadratic with the number of vertices. This indicates
that NGI is faster on random weighted graphs than the RKHS Interpolator-Based
Graph Matching algorithm [40] which has cubic complexity.
6. Conclusion

We proposed and tested a neural network approach to solve exact and inexact
graph isomorphism problems based on using vertex e-invariants. Experimental
results on random weighted graphs yield exact results on all test instances within
impressive time limits. The results indicate that (1) neural networks are capable of
discovering structural properties in a preprocessing step, (2) neural preprocessing
may be of greater impact than solely using sophisticated energy minimization
methods. For large scale application problems, like identifying slightly perturbed
query graphs in a data set of model graphs, it is of increasing importance to develop
more powerful inexact vertex and edge invariants.
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