
Towards Goal-driven Behaviour Control of
Multi-Robot Systems

Christopher-Eyk Hrabia, Stephan Wypler and Sahin Albayrak
Technische Universität Berlin, DAI-Lab,

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
christopher-eyk.hrabia@dai-labor.de

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The task-level control of mobile robots in uncertain
environments demand high adaptivity and cognitive capabilities
that allow for flexible decision making and planning. This
work introduces the ROS Hybrid Behaviour Planner (RHBP).
RHBP combines the advantages of a reactive and adaptive
behaviour-based layer with a formal symbolic planner that
enables appropriate goal pursuance. Here, we present the first
development stage of our system that enables more adaptive
multi-robot decision making and planning in the widely used
Robot Operating System (ROS) ecosystem.

Index Terms—Behaviour-based Planning, Behaviour Networks,
Multi-Robot Systems, Hybrid Planning, Decision-Making, Robot
Operating System,

I. INTRODUCTION

Today’s robotic systems are able to support or replace hu-
mans in a wide variety of tasks, they get more feature-rich and
are capable to deal with various situations and environmental
conditions. Even more, they are leaving the friendly, well
structured world of automation and are facing the challenges of
a dynamic world in house-holds, offices, or public space. This
becomes especially challenging in case of several cooperating
mobile robots, useful in application of logistic tasks, disaster
rescue, or precision farming. In consequence robots have to
deal with uncertain conditions and unforeseen changes in the
environment autonomously. This demand for systems that put
emphasis on robustness and adaptivity rather than on behaving
in an optimal fashion. As discussed in [1], adaptivity in gen-
eral, fast and flexible decision making, and planning in partic-
ular, are crucial capabilities for autonomous robots. From the
engineers perspective it is very difficult to develop autonomous
systems that are able to react appropriately to unforeseen
changes while still pursuing intended goals. Especially in the
widely applied and popular Robot Operating System (ROS)
ecosystem [2] developers are mostly using pre-scripted, non-
adaptive methods of describing the high-level robot behaviours
or tasks. The above methodology requires envisioning all
appropriate behaviour execution sequences, states and state
transitions in advance. More dynamic approaches providing
adaptivity and goal pursuance at the same time are missing.

In order to fill this gap we are working on a new hybrid
approach with tight ROS integration that incorporates features
from reactive behaviour based systems and classical planning.
In this paper the first development stage of our solution is
presented that can be used on single and multi-robot systems.

The remainder of the paper is structured as follows. In
Section II, we discuss related approaches, Section III presents
our general concept including the high-level architecture, with
further detail about the hybrid approach in Section IV and V.
The ROS integration is explained in Section VI and first
experiments and results are presented in Section VII. Finally,
we summarise our work and outline the necessary future steps
in Section VIII.

II. RELATED WORK

In the ROS community the most commonly used approaches
for task-level or behaviour control are rule based and reactive.
A popular package is SMACH that allows the user to build
hierarchical and concurrent state machines (HSM) [3]. All
kind of state machine based approaches have the problem that
a decision or reaction can only be given if a state transition
was already modelled in advance. The more task-oriented be-
haviour trees, available in the pi trees package [4], are another
popular alternative. Even though behaviour trees allow for
more reusable behaviour implementations and some higher-
level abstractions, by using special operators like sequencer
and selector, the path of execution is still preprogrammed and
is likely to fail in dynamic environments. The reason is that
it is difficult to design such system without missing possible
useful dynamic transitions.

More flexible is the BDI-based implementation Cogni-
TAO [5] available in the decision making package that also
includes modules for the creation of finite and hierarchical
state machines. CogniTAO is targeting high-level control of
multi-robot systems in dynamic environments. In CogniTAO
the user defines behaviours, called plans, as decision-graphs
with start and end conditions that are executed and selected by
protocols. The selection and decision process is synchronised
through a team of robots. The concept is more suitable for
uncertain environments because the execution sequence is not
fixed and the selection of behaviours (plans) is based on
conditions. Nevertheless, it is still difficult to define mission
or maintenance goals and there exist only simple protocols for
plan selection.

Outside of the ROS community we can find other reac-
tive approaches, for instance the behaviour network archi-
tecture [6]. Here, the behaviours are connected with each
other based on their preconditions and effects. The executed
behaviour is dynamically selected based on a utility function.

The utility function is calculating the positive influence on
a goal for each behaviour, called activation that is spread
through the network. Different extensions of this approach
introduce learning capabilities and multi-robot application [7]
or concurrency and non-binary preconditions [8]. The hier-
archic version of Allgeuer is available as a ROS package,
but simplified in the way that it only relies on pre-computed
static inhibitions of conflicting behaviours. A general issue is
that network parameters need to be properly tuned towards a
specific application to avoid the risk of getting stuck in cycles,
since it is difficult to express a required execution order.

Symbolic planners in the tradition of STRIPS [9], like
hierarchical task networks (HTN) [10] or further advanced
implementations, like graph-based approaches [11] or heuristic
planners [12] are very good in directing towards a goal and
determining a possible execution order. ROSPlan, a generic
symbolic task planning framework in this inspiration was
recently presented by Cashmore et al. [13]. In fact, ROS-
Plan is a PDDL dispatching framework that allows to map
PDDL actions to ROS actions. It also includes a OWL based
knowledge base, which is used to automatically generate
the problem file, and an observer that determines situations
requiring replanning. However, the model of the domain has
to be provided in PDDL and the mapping has to be verified
manually.

However, all pure symbolic planners have problems under
uncertain conditions because of high computational costs and
calculating alternative decisions in case of unreachable goals.

In order to combine the advantages of both, reactive be-
haviour approaches, being fast and more flexible, and symbolic
planning, being more goal-directed, some researchers have
proposed hybrid architectures for single robot systems. An
early attempt was given by Hertzberg et al. [14], who pro-
posed a low level behaviour controller using two differential
equations, one for creating the actuator control signal and one
controlling the activation. The integration of a special term
in the activation equation enabled external influences from
an operator like a human or a symbolic planner. Here, the
reactive behaviour layer is still operational on its own and
the model for the planner has to be provided independently.
A more recent hybrid approach [15] models each high-level
task as an independent behaviour network that is selected by a
planner. This architecture is strongly goal-directed, but looses
flexibility for dynamic adaptation since behaviours of different
networks can not be combined with each other.

Hybrid approaches that combine behaviour networks with
symbolic planning are a promising direction to create robots
that are adaptive and goal-driven at the same time. The
presented literature includes many fruitful ideas [8], [14], [7],
[15], [6], even so they are not integrated into one solution,
and are not all available for the ROS community. Further-
more, extending the concept towards multi-robot application,
enabling learning capabilities and integrating self-organisation
mechanisms are open issues. A comparison of the features of
the different presented approaches is shown in Table I.

III. ARCHITECTURE

In order to address the mentioned open challenges, we
are working on an enhanced system that supports reactive
and adaptive behaviours by utilising behaviour networks on
a lower level and combine it with classical symbolic planning
on a higher level for a strong alignment towards the mission
goal and enabling a mixed bottom-up and top-down control.
Here, top-down refers to the definition and pursuing of goals
for the entire system, while lower level behaviours can be
implemented bottom-up and integrated into the higher-level
decision-making and planning.

Figure 1 shows our target architecture. It includes a cen-
tralised meta-level symbolic planner that initially or from
time to time provides sub-goals for individual robots. The
meta-level symbolic planner relies on available behaviours
and information it receives from each robot. Each robot
has an own symbolic planner that influences its lower level
behaviour network and supports the long-term goal-fulfilling.
Therefore, the robot remains independent from the centralised
planner and is still able to operate in case of interrupted or
unavailable communication. Since our architecture is targeting
multi-robot applications it requires some coordination amongst
the robots, for instance by applying nature-inspired swarm
algorithms, the meta-level symbolic planner is also controlling
the coordination and adaptation mechanism selector based
on its higher level goals. This component is responsible for
the determination of an appropriate coordination mechanism
for the multi-robot system that is supporting the intended
goals. Based on the selected mechanism it is influencing on
behaviour parameters.

An important point is that the centralized components
for planning, coordination and adaptation selection are only
providing the outer boundary for operation with an initial con-
figuration, constraints, and sub-goals. Hence, the centralized
part is highly decoupled, visualized with the dotted box in
Figure 1. The centralised components are supposed to run
on a human controlled computer, like a ground station of
autonomous unmanned aerial vehicle.

The behaviour network itself strongly supports the idea of
an adaptive robot system by being

• opportunistic and trying to perform the best-suited action
at any time even if the symbolic planner cannot handle
the situation and does not find a suitable plan;

• light-weight in terms of computational complexity for fast
responses;

• performing well in dynamic and partially observable
environments under the assumption that actions taken at
one point in time do not block decision paths in the future.

The manager module supports and manages the distributed
execution of several behaviours on different machines within
the robot. In fact, the manager is composing the behaviour
network using the information provided by behaviours, like
preconditions and effects. Moreover, the manager is monitor-
ing and supervising the behaviour network by interpreting the

Table I
COMPARISON OF SYMBOLIC PLANNING FRAMEWORKS, BEHAVIOUR NETWORKS AND HYBRID PLANNING APPROACHES.

[Y=YES, N=NO, P=PARTLY, W=WORK IN PROGRESS, M=MANUALLY]

Behaviour Network Symbolic Planning General

Included
Learning Effects

Hierarchies

Generating plan descriptions

Included
Standard Planner

Non-binary Preconditio
ns

Parallel Behaviour Execution

ROS Integ
ration

Multi-R
obot Support

Maes 1989 Y N N N N N N N N N
Jung 1998 Y Y N N N N N N N M
Hertzberg 1998 Y N N N Y ADL Y N N N
Decugis 1998 Y Y Y N N N N N N N
Allgeuer 2013 Y N N N N N Y Y Y N
Lee 2014 Y N N N Y N N N N N
Cashmore 2015 N N N P Y PDDL Y N Y P
RHBP (This work) Y W W Y Y PDDL Y Y Y Y

Meta-level Symbolic Planner

Coordination and Adaptation Selector

Symbolic
Planner

Behaviour Network
(Precon., Action, Effect)

Symbolic
Planner

Behaviour Network
(Precon., Action, Effect)

Symbolic
Planner

Behaviour Network
(Precon., Action, Effect)

Manager Manager Manager

Figure 1. Target architecture for multi-robot hybrid behaviour planning

provided plan and influencing the behaviours accordingly. See
next section for more details.

The first expansion stage of our concept, named ROS Hybrid
Behaviour Planner - RHBP, implements a large subset of
the former presented target architecture. At the moment we
already implemented all required layers for an individual robot
in the target architecture, namely Symbolic Planner, Manager
and Behaviour network. However, multi-robot configurations
are already supported as well by using a distributed behaviour
network with behaviour nodes running on the corresponding
robots. Due to the yet missing meta-level planner this requires
a much more centralised approach than envisioned for the
target architecture. Thus, the individual robots have to be
connected to a central control instance running a Symbolic
Planner and Manager. Another already possible configuration
would be running all robots completely independently with
each having a Symbolic Planner, Manager and Behaviour
Network, but this would require to synchronise all goals and
configurations manually. The following sections provide more

condition

activator sensor

behaviour

preconditions

effectseffect

goal

conditions
1..*

1

0..*

1
0..*

1

Figure 2. Behaviour network components and their relationship

details about the individual layers of the current development
stage.

IV. BEHAVIOUR-NETWORK BASE

A. Model

The behaviour network layer is based on the concepts of
Jung et al. [7] and Maes et al. [6], but incorporates other
recent ideas from Allgeuer et al. [8], in particular supporting
concurrent behaviour execution, non-binary preconditions and
effects.

The main components of the network are behaviours rep-
resenting tasks or actions that are able to interact with the
environment by sensing and acting. Behaviours and goals both
use condition objects composed of an activator and sensors to
model their environmental runtime requirements, see Figure 2.
The network of behaviours is created from the dependencies
encoded in wishes based on preconditions and effects.

A wish of a behaviour expresses the satisfaction with the
world state (current sensor values). It is related to a sensor
and uses a real value [-1,1] to indicate both the strength and
direction of a desired change, 0 indicates complete satisfac-
tion. Greater values express a stronger desire, by convention
negative values correspond to a decrease, positive values to an
increase.

Effects model the expected influence to available sensors
(the environment) of every behaviour similar to wishes.

Goals describe desired conditions of the system, their imple-
mentation is similar to behaviours except that they do not have
an execution state or model effects on the network. Therefore,
goals incorporate conditions that allow for the determination
of their satisfaction and express wishes exactly like behaviours
do. Furthermore, goals are either permanent and remain active

in the system as maintenance goals, or are achievement goals
that are deactivated after fulfilment.

Sensors model the source of information for the behaviour
network and buffer and provide the latest sensor measure-
ments. The type of the sensor value is arbitrary, but to form
a valid condition a matching combination of sensors and
activator must be used. Raw sensor values of arbitrary type are
mapped into the behaviour network by activators. Activators
compute a utility score (precondition satisfaction) from sensor
values using an internal mapping function, see next section for
more details. The separation of sensor and activator fosters
the reuse of code and allows also the abstract integration
of algorithms using more complex activation functions like
potential fields. Our implementation already comes with basic
activators for expressing boolean, threshold-based and linear
mapping of one-dimensional sensors. Multi-dimensional types
can either be integrated by custom activators that provide a
normalisation function or by splitting dimensions into multiple
one-dimensional sensors.

B. Decision Making

The key characteristics and capabilities of a behaviour
network are defined by the way activation is computed from
sensor readings and the behaviour/goal interaction. Behaviours
are selected for execution based on a utility function that
determines a real number behaviour score, called activation.
There are multiple sources of activation, with negative val-
ues corresponding to inhibition. If the total activation of
behaviours reach the execution threshold and all preconditions
are fulfilled the planner selects behaviours for execution. The
behaviour network calculation is repeated in fixed frequency
that can be adjusted according to the application requirements.

The positive execution threshold is coupled to the activity
of the network. It is decreased after every iteration without
a running behaviour by the Activation-Threshold-Decay pa-
rameter (by default 20%) and increased by the same amount
every time a behaviour is started in order to support the desired
opportunistic habits.

At every iteration all 7 activation sources (1-7) are summed
to a temporary value called activation step for every behaviour.
After the activation step has been computed for every be-
haviour it is added to the current activation of the behaviour
reduced by an activation decay factor of 0.9 by default. The
decay reduces the activation that had been accumulated over
time if the behaviour does not fit the situation any more and
prevents the activation value from becoming indefinitely large.

The fulfilment of preconditions, modelled as combination of
sensors and an activator, is called satisfaction (real [0,1]), see
Equation 1. The overall behaviour satisfaction is the product
of all precondition satisfactions.

A predecessor (Equation 2) is a behaviour that fulfils a
wish of another behaviour. If the product of the effect of
behaviour A and wish of behaviour B for a particular sensor
is greater than 0 then A is a predecessor of B. A behaviour
gets activation from all its executable (preconditions fulfilled)
predecessors for every wish. The successor (Equation 3)

describes the reverse relationship to a predecessor. If the (pre-)
conditions of behaviour or goal B are fulfilled by behaviour
A then B is the successor of A.

C = precondition;B = behaviour;P = plan;G = goal
alast = last total network activation; s = satisfaction

a = activation;w = wish; e = effect;β = bias parameter
n = number of elements sharing a property
iB = behaviour index in plan sequence

aprec =
∏

C|C∈B

s · βprec (1)

apred =
∑

B|B∈pred

e · w · aB · βpred
alast · nw

(2)

asucc =
∑

B|B∈succ

e · w · aB · βsucc
alast · ne

(3)

agoal =
∑

G|G∈succ

e · w · βgoal
alast · nw

(4)

aconf =
∑

B|B∈conf

(−1 · (1− |w|) · |e| · aB · βconf
alast · nconf

) (5)

aconfgoal =
∑

G|G∈conf

(−1 · (1− |w|) · |e| · βconf
alast · nconf

) (6)

aplan =

{
1
iB
· βplan if B ∈ P

0 otherwise
(7)

If the product of the effect of behaviour A on one sensor
and the wish of behaviour B for the same sensor is smaller
than 0 then behaviour A is a conflictor of B, see Equation
5. Behaviour A is as well a conflictor if it has an effect on
a wish with an indicator value of 0 of another behaviour B
because it would undo a satisfied precondition of B.

The activation by goal agoal is defined similar to the
activation from successors except that not the indicator of
wishes of successors but those of goals are considered and
that another bias term goal bias βgoal is used instead of the
successor bias term βsucc, see Equation 4. Inhibition by a goal
is expressed with Equation 6 to model undo or counteracting of
maintenance goals. The bias term influences the characteristic
of the system to strive after goals.

The behaviour network is influenced by the symbolic plan-
ner with the activation term aplan, see Equation 7. It depends
on the position of the first concurrence of the behaviour in the
symbolic plan using 1-based indices and the plan bias term
βplan. This direct influence is similar to operator coupling
terms as presented in [14].

After behaviour execution the activation value is reset to
0. Behaviours are not expected to finish instantaneously and
multiple behaviours are allowed to run concurrently, if they
are not having conflicting effects.

V. SYMBOLIC PLANNER EXTENSION

As already stated in the previous section one term (Equation
7) in the activation calculation is influenced by the symbolic
planner, applying the index position of the particular behaviour
in the planned execution sequence. In order to allow for a
quick replacement of the planner we based our interface on the
widely used Planning Domain Definition Language (PDDL)
in version 2.1. Hence, a majority of existing planners can be
used. In particular the planner requires deterministic problem
solving in a STRIPS model, Negated predicates for translat-
ing Boolean preconditions, Numeric fluents and equality for
modelling non-boolean sensor values. Conditional effects are
optionally required because they are allowed in the behaviour
layer but not essential and most planning scenarios can be
designed to avoid them.

For our implementation we developed a ROS Python wrap-
per for the Metric-FF [16] planner, a version of FF extended
by numerical fluents and conditional effects. It meets all
requirements and due to its heuristic nature favours fast results
over optimality. In fact the wrapper is only responsible for
appropriate result interpretation and execution handling.

The mapping and translation between the domain PDDL
and the resulting plan is part of the manager. The PDDL gen-
eration on entity level is done automatically by the behaviour,
activator and goal objects themselves through a defined service
interface. This includes the conversion of complex data types
of sensors (like locations or other multi-dimensional data) to
single dimensional fluents while maintaining as much of the
original meaning as possible. Moreover, the manager monitors
time constraints defined in behaviours, re-plans in case of
timeouts, new available behaviours or if the behaviour network
execution order deviates from the proposed plan. This ensures
that replanning is only executed if really necessary and keeps
as much freedom as possible for the behaviour network layer
for fast response and adaptation.

The manager also handles multiple existing goals of a mis-
sion by selecting appropriate goals at the right time depending
on available information, e.g. if goals can not be reached
currently. Since goals can have priorities the manager tries to
find a plan that reaches as many high-priority goals as possible.
For that, it uses an elimination algorithm that first tries to
achieve the highest priority goal together with as many other
goals as possible and repeats this process with lower priority
goals until it is able to find a valid solution.

VI. ROS-INTEGRATION

All components of the RHBP are based on the ROS mes-
saging architecture and are using ROS services and topics for
communication. Every component of the behaviour network,
like a behaviour or sensor, is automatically registered to
the manager node and reports its current status accordingly.
The application specific implementation is simplified through
provided interfaces and base classes for all behaviour network
components that are extended by the application developer and
completed by filling hooks, like start and stop of a behaviour.
The class constructor automatically uses registration methods

and announces available components to the manager. The
ROS sensor integration is inspired by Allgeuer et al. [8] and
implemented using the concept of virtual sensors. This means
sensors are subscribed to ROS topics and updated by the
offered publish-subscribe system. Moreover, certain behaviour
network components like goals (currents satisfaction) are auto-
matically generating ROS topics that can also be used outside
the actual RHBP environment.

For each registered component a proxy object is instantiated
in the manager to serve as data source for the actual planning
process where the activation is computed based on the rela-
tionships arising from the reported wishes and effects. Besides
the status service offered by behaviours and goals there are
a number of management services available to influence the
execution, for instance to start, stop, activate, deactivate and
prioritise.

Due to the distributed ROS architecture the whole system
works even across the physical boundaries of individual robots
on a distributed system. Moreover, parameters and constants
can be conveniently set using ROS mechanisms even at run
time, for instance by using the provided visual rqt monitoring
and configuration frontend. Furthermore, RHBP comes with
generic implementations that directly support simple single
dimensional topic types for numbers and booleans in order to
enable direct integration of existing sensors by just configuring
the topic name. For more complex sensor types the user has
to extend a normalisation function in a template that reduces
one or more sensors to a single dimensional value. Activators
for some common ROS types are provided as well and are
going to be extended in future.

In order to enable the described target architecture with
multiple independent RHBP instances on individual robots in a
distributed multi-robot system, several RHBP can also coexist
in one ROS environment using name prefixes.

VII. EXPERIMENTS

The current RHBP development stage has been tested in
three different experiments.

First we compared our solution against its ancestor by
implementing the same artificial test scenario as Maes [6] has
used for evaluating her purely reactive behaviour system. In
the scenario, a robot with 2 arms should sand a board and
spray paint itself. After the robot has spray painted itself it is
no longer operational which is a precondition to sanding the
board. There is a vise at the robots workplace to place the
board in. Furthermore, a board, a sander, and a sprayer are
reachable by the robots arms. Possible plans for solving the
task would be to pick up the board and sander, sand the board,
put down either of it, pick up the sprayer in the free hand and
spray paint itself. Alternatively the robot could use the vise to
avoid putting the sander or board down. It is important to note
that the robot must not spray paint itself before it has sanded
the board although this action would directly lead to the goal.

In order to keep our solution comparable the same
behaviours have been implemented. These are: PickUp-
Sprayer, PickUpSander, PickUpBoard, PutDownSprayer, Put-

Figure 3. RHBP activation plot of the hybridly planned Maes’[6] scenario.

DownSander, PutDownBoard, PlaceBoardInVise, SandBoard-
InHand, SandBoardInVise, and SprayPaintSelf. All behaviours
execute instantly and fulfil their action before the next planning
iteration starts. However, the state representation is slightly
different from Maes regarding the point that we model the
used hand for picking an item. Although one particular goal
of the original scenario was to show the resource management
abilities of the planner, Maes’ state representation makes
this challenge relatively simple for the planner by having
two indistinguishable hands. Thus, the system does not have
to track which of the two hands can carry out the correct
operation. Maes’ simplification allows a hand to put down
an object as long as it is currently located in any of the 2
hands. Our extended scenario implementation also applies the
new features of numeric sensor values and conditional effects
in order to minimize the state space in comparison to pure
boolean state representations and less abstracted behaviours.
To track the location of an objects its position is in encoded in
an integer value: 0 means that the object is not in any hand,
1 means that it is grabbed by the left hand and -1 means
that it is located in the right hand. These values determine
the conditional effect that putting down an object has on the
hand-occupancy sensors.

Figure 3 shows the activation of each behaviour at the end
of the planning iteration before action selection is performed.
Behaviours above the black activation threshold may be se-
lected for execution if they are active, their preconditions
are fulfilled and they do no not conflict with any other
already running behaviour. At the end of their execution the
activation is reset to 0. In this particular scenario all behaviours
are finishing instantaneous so that their activation is reset
before the next planning iteration starts. This is clearly visible
in the plot as a sudden decrease of activation and marks
the point of activation clearly. This results in a behaviour
sequence of PickUpBoard, PickUpSander, SandBoardInHand,
PutDownBoard, PickUpSprayer, and SprayPaintSelf.

Our hybrid implementation using the same behaviour do-
main model with the additional used-hand limitation outper-
forms Maes’ with 10 instead of 19 required planning/decision
making iterations. Moreover, we encountered that our solution
was able to solve the problem without any parameter tuning,

in contrast to Maes’ implementation, of the behaviour layer
due to goal-directing influence of the symbolic planning layer.
For comparison our solution using only the behaviour network
layer and tuned bias parameters requires 24 iterations due to
the slightly more complex scenario we have targeted.

In another experiment we applied our solution on an un-
manned aerial vehicle (UAV) that was developed for the
national German SpaceBot Camp Competition 2015. 1. Here,
the autonomously operating UAV was required to explore an
unknown GPS-denied environment while creating a map and
locating three target objects. The implemented high-level be-
haviours have been take off, land, collision avoidance, return-
to-home and exploration together with a number of conditions
like keeping a certain altitude, monitoring the battery level,
keeping track of the mission time and staying within the
competition area. The experiments have been successfully
conducted in the simulation environment MORSE [17] as
well as on a real UAV running ROS on an embedded x86
computer. Even though the scenario did not include crucial
points, rather, it could been implemented with simple hierar-
chical state machines, we have been able to prove that RHBP
performs well on real systems running ROS in dynamic real-
time environment. More details can be found in [18].

Furthermore, we tested the RHBP in a multi-robot scenario
using the well known turtlesim simulation of the ROS tutorial
package. The simulation allows to control the motion of
turtle robots with differential-drive velocity commands. These
commands are applied for a short amount of time allowing
for a simulation in a stepwise execution. In particular we
implemented a simple path finding scenario, which included
random start and two target positions for each robot and a
constraint of avoiding collisions with each other. For that
we extended the turtlesim simulation with a simple collision
detection of the nearest neighbour robot and additional visual
representations (e.g. to highlight collision sensing range of
turtles and target positions)2.

In order to test the current stage of multi-robot support we
implemented a centralised approach with one RHBP instance
(behaviour network and symbolic planner) managing all robot
behaviours. As an example of a specific realisation, the im-
plemented and used behaviour modules for each robot are
described below. All behaviours and sensors are instantiated
for each robot, configured with the particular name and
corresponding topics.
• Pose-Sensor uses the provided sensor wrapper

PassThroughTopicSensor to subscribe to the Pose-
Topic of the robot. PassThroughTopicSensor simply
provides any sensor type to the connected activator
without any type conversion, thus requiring a matching
activator implementation.

• Team-Mate-Sensor is another instance of the
PassThroughTopicSensor that is subscribed to the
Neighbour-Pose topic, which provides the position of

1http://www.dlr.de/rd/desktopdefault.aspx/tabid-8101/13875 read-35268/
2Source code available: https://github.com/cehberlin/ros tutorials

http://www.dlr.de/rd/desktopdefault.aspx/tabid-8101/13875_read-35268/
https://github.com/cehberlin/ros_tutorials

the closest team-mate position in a perception radius.

• Distance-Activator is a specialisation of RHBP’s linear
activator that computes activation based on the distance
to a position.

• Move-Behaviour is a custom behaviour implementation
that calculates the necessary velocity command based
on the current distance and publishes it on the Twist-
Topic of the turtle robot. Move-Behaviour is instantiated
in two configurations, first as Move-Goal-Behaviour-1
and second as Move-Goal-Behaviour-2 leading to the two
target position with effects on Pose-Sensor

• Move-Team-Behaviour is a specialisation of Move-
Behaviour implementing a simple collision avoidance
behaviour (rotating away counter-clockwise from the de-
tected neighbour and moving with a velocity proportional
to the neighbour distance) in order to keep the distance
to other robots with effect on Team-Mate-Sensor.

• Two common acquisition goals are instantiated that use
a condition formulated with the Pose-Sensor and the
Distance-Activator to express the target positions.

• A maintenance goal instance applies the Distance-
Activator and the Team-Mate-Sensor to express the col-
lision avoidance.

It is important to consider that the above is one possibility
of modelling the problem with RHBP. The collision avoidance
could also been realised by using two single dimensional real
sensors providing distance and orientation of the closest team-
mate and instead of using two goals, the same could have been
expressed with a different precondition configuration.

The modelled application scenario was tested on 10 ran-
domly generated start configurations for 5 robots. The exe-
cution was monitored and the required number of planning
and decision making steps have been recorded until all goals
have been achieved. The two target positions stayed the same
for all evaluation runs. The selected target position in the
lower-left and top-right corner of the quadratic environment
represent conflicting goals for the robots as they are exactly
mirroring each other on the diagonal axes of the environment.
The decision-making cycle of RHBP was configured to 1Hz
to simplify monitoring and tracking.

Figure 4 shows scenario 7 as an example including the
start configuration and the two resulting final situations using
only our Behaviour Network layer and the full hybrid solution
of RHBP. The given example illustrates the advantage of the
hybrid planning architecture as the planner helps to generate
a more efficient coordination amongst the robots and leads to
a more optimal solution.

Table II summarizes the results of the comparison between
the experiment executions using RHBP in behaviour network
only mode and in the full hybrid planner configuration using
the behaviour network together with the PDDL planner. The
aggregated results show the configuration using the planner
require 40 % less planning cycles to resolve the scenario,
which is directly related to execution time in our simple
simulation. Only start configuration 2 needed more planning

Figure 4. Turtlesim example scenario 7 with start configuration and final
results comparing behaviour network only with hybrid planner (RHBP).
Red points highlight the target positions. Circles around robots indicate the
collision detection range. Grey lines mark the robot trajectories.

steps in the hybrid planning configuration. Here, the plan
leaded to a collision avoidance situation that was difficult to
resolve and couldn’t been considered by the planner in advance
due to the simplified model of the world.

The last experiment showed that the combination of a
behaviour network with a planner leads to more efficient
solutions and the integration of a planner helps to coordinate
multiple robots. However, the experiments also show that
the current development stage with a centralised planning of
multiple robots is limited in the way that the currently used

Table II
COMPARISON OF A RHBP BEHAVIOUR NETWORK LAYER ONLY

CONFIGURATION AGAINST THE HYBRID-PLANNING CONFIGURATION IN
THE MULTI-ROBOT PATH FINDING SCENARIO.

Planning steps

Scenario Hybrid Planner Behaviour Network
1 24 26
2 87 48
3 54 95
4 24 39
5 37 44
6 45 70
7 34 137
8 10 56
9 35 93

10 55 71

Sum 405 679
Mean 40,5 67,9

Median 36 63
STD 20,3 31,4

planner does not support parallel behaviour execution. For
that reason our planned extension has to consider parallel
behaviour execution not only on the behaviour network level
to further improve the results. Furthermore, the multi-robot
simulation experiment proved that our solution is also capable
of lower level robot control by implementing behaviours that
directly steer robot motion, besides validating the current
multi-robot planning and decision-making capabilities.

VIII. CONCLUSION

In this work we presented the ROS Hybrid Behaviour Plan-
ner (RHBP)3 that addresses the needs of the ROS community
for an adaptive decision making and planning package for
high-level behaviour control. RHBP combines the advantages
of a reactive and adaptive behaviour-based decision making
component with a symbolic planner that enables appropriate
goal pursuance. In particular we extended and combined exist-
ing concepts of reactive and hybrid behaviour-based decision
making in a tightly ROS integrated solution. In particular our
solution automatically generates the required plan descriptions
(domain and problem) for the PDDL-based planner and sup-
ports multiple robots alongside all features that have only been
available in single approaches, but have never been combined.

Furthermore, the current solution is embedded into a bigger
concept that is going to provide extended higher-level planning
and coordination mechanism management for multi-robot sys-
tems. The first development stage of RHBP is incorporating
all required components of an individual robot and already
has superior performance over his pure reactive behaviour
network ancestor. Furthermore, the current stage is capable of
controlling multi-robot systems in uncertain environments, but
in a different, more centralised configuration, as we intended
for the complete target solution.

The next planned step for a more decoupled and decen-
tralised solution is the development of meta-level symbolic

3Source code available: https://github.com/DAInamite/rhbp

planning together with the ability of creating behaviour hi-
erarchies, which will make available sub-goals for individual
robots in a goal-oriented top-down fashion. Moreover, we will
work on the coordination and adaptation mechanisms selector
that provides mechanisms depended on higher level goals.
The incorporation of reinforcement learning will further en-
hance the adaptation capabilities of the behaviour network by
automatically learning behaviour effects and goal-supporting
behaviours in a model-free fashion.

ACKNOWLEDGMENT

This work was partially supported by the German
Federal Ministry of Education and Research (BMBF
grants 13N14093, project EffFeu, http://www.dai-labor.de/cog/
laufende projekte/efffeu/).

REFERENCES

[1] C.-E. Hrabia, N. Masuch, and S. Albayrak, “A metrics framework for
quantifying autonomy in complex systems,” in German Conference on
Multiagent System Technologies. Springer, 2015, pp. 22–41.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
ICRA workshop on open source software, vol. 3, no. 3.2, p. 5, 2009.

[3] J. Bohren and S. Cousins, “The SMACH high-level executive [ros
news],” Robotics Automation Magazine, IEEE, vol. 17, no. 4, pp. 18–20,
Dec 2010.

[4] R. P. Goebel, ROS by Example: Packages and Programs For Advanced
Robot Behaviors, ser. Pi Robot Production. Lulu.com, 2014, vol. 2.

[5] L. CogniTeam, “Cognitao (think as one).” [Online]. Available:
http://www.cogniteam.com/cognitao.html

[6] P. Maes, “How to do the right thing,” Connection Science, vol. 1, no. 3,
pp. 291–323, 1989.

[7] D. Jung, “An architecture for cooperation among autonomous agents,”
Ph.D. dissertation, University of South Australia, 1998.

[8] P. Allgeuer and S. Behnke, “Hierarchical and state-based architectures
for robot behavior planning and control,” in Proceedings of 8th Workshop
on Humanoid Soccer Robots, IEEE-RAS Int. Conf. on Humanoid Robots,
Atlanta, USA, 2013.

[9] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3, pp. 189–208, 1972.

[10] T. Breuer, G. R. Giorgana Macedo, R. Hartanto, N. Hochgeschwender,
D. Holz, F. Hegger, Z. Jin, C. Müller, J. Paulus, M. Reckhaus, et al.,
“Johnny: An autonomous service robot for domestic environments,”
Journal of Intelligent and Robotic Systems, vol. 66, no. 1-2, pp. 245–
272, 2012.

[11] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, vol. 90, no. 12, pp. 281 – 300, 1997.

[12] J. Hoffmann, “Extending ff to numerical state variables,” in ECAI, 2002,
pp. 571–575.

[13] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera,
N. Palomeras, N. Hurtós, and M. Carreras, “Rosplan: Planning in the
robot operating system.” in ICAPS, 2015, pp. 333–341.

[14] J. Hertzberg, H. Jaeger, U. Zimmer, and P. Morignot, “A framework
for plan execution in behavior-based robots,” in Proc. of the IEEE Int.
Symp. on Intell. Control, 1998, pp. 8–13.

[15] Y.-S. Lee and S.-B. Cho, “A hybrid system of hierarchical planning of
behaviour selection networks for mobile robot control,” Int J Adv Robot
Syst, vol. 11, p. 57, 2014.

[16] J. Hoffmann, “Extending ff to numerical state variables,” in In Proceed-
ings of the 15th European Conference on Artificial Intelligence. Wiley,
2002, pp. 571–575.

[17] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
Open Robots Simulation Engine: MORSE,” in Proceedings of the 2011
IEEE International Conference on Robotics and Automation, 2011.

[18] C.-E. Hrabia, M. Berger, A. Hessler, S. Wypler, J. Brehmer, S. Matern,
and S. Albayrak, Robot Operating System (ROS) - The Complete
Reference (Volume 2). Springer International Publishing, 2017, ch. An
autonomous companion UAV for the SpaceBot Cup competition 2015.

https://github.com/DAInamite/rhbp
http://www.dai-labor.de/cog/laufende_projekte/efffeu/
http://www.dai-labor.de/cog/laufende_projekte/efffeu/
http://www.cogniteam.com/cognitao.html

	Introduction
	Related Work
	Architecture
	Behaviour-Network Base
	Model
	Decision Making

	Symbolic Planner Extension
	ROS-Integration
	Experiments
	Conclusion
	References

